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Motivation

• Computational Intelligence refers to the ability of a computer to learn a 

specific task from data or experimental observation.

• steering of self-driving cars and parking aids

• automating a production pipeline



Motivation

Problems with real environments

• Real tasks are hard to setup

• Failure of the algorithm has considerable cost

• It becomes hard to study the algorithms underlying characteristics

Games can be simulations of real world tasks

• Quantifiable goals, controllable difficulty, and large data sets

• Digital games are fully accessible to computers



A Short History of Computational Intelligence in Games



Modern Reinforcement Learning Examples



Agent-Environment Interface

A general framework for studying games which consists of the elements

• Agent: the learner and decision-maker

• Environment: anything the agent interacts with, e.g. a game

• Actions: Agent and environment interact continuously interact with each other. 

• Reward: numerical values provided that the agent tries to maximize over time.



Components of a Game

State           can be perceived through multiple sensors

• a state may not be fully observable (partial information game)

The whole environment can be modelled as a probability distribution of possible outcomes:

• But we can also model both components separately



Problem Classification

Two popular learning approaches:

1) Learn which actions are good

2) Learn to anticipate the future

Both allow the definition of learning 

algorithms as well as approximate 

solutions and hybrid algorithms.



Most Popular Algorithm Classes

Reinforcement Learning

• Performance depends on the 

available training time

Simulation-based Search

• Performance depends on the 

available computation time during 

evaluation



Current and Proposed Solution

Deep Reinforcement Learning

• Learn an approximate function that 

maps the state to the expected 

reward

Prediction-based Search

• Learn an approximate function that 

predicts the next state



Forward Model Learning

Goal: Learn to predict the upcoming states of the environment.

A forward model 𝑓𝑚 maps the environment’s state 𝑆𝑡 and the agent’s action 𝐴𝑡 at 

time 𝑡 to the upcoming state 𝑆𝑡+1 of the environment

Above definition applies to environment models that fulfill the Markov Property:



End-To-End Solution

Learning a model by consecutive interaction with 

the environment .

Each observed state transition represents a single 

training example.

• Classifiers and regressors can be used for the 

prediction



End-To-End Solution

Deep Learning Forward Models

• Current systems often make use of deep neural 

networks to predict upcoming states

• Many training examples are required to fit the 

networks parameters

The training time is dependent on the size of the state and 

action space. Both can be enormous!

• How to reduce the model’s training time?



Decomposed Forward Model

Assumption: 
• sensor values can be modelled independently

Learn on sub-model for each observable sensor value

Aggregate the result of each sensor value prediction



Optimal Decomposition

In case enough observation data is available:
• infer the dependencies among the in- and 

outputs sensor values
• optimal decomposition can be achieved

Alternatively, we can ask experts to model the 
variables dependencies or use heuristic solutions.

With each independency we:
• reduce the model space considerably
• require less training data
• create a more efficient model

???

???



Continuous State-Space Forward Models

The decomposed forward model can be used to model continuous state-spaces

• Instead of predicting the resulting state, predict the changes in between states

Example: Predicting the movement of a robot

• End-to-End: Predict the robot’s final position at time t+1

• Differential Decomposed Model: separately predict the 

change in position of its arms and legs



Model Requirements

Model accuracy:

• accurate predictions are required to simulate future time-steps

Model speed: 

• the trained model needs to be fast to facilitate more simulations

Model size: 

• the number of parameters should be low to 

Interpretability and Reliability:

• risk aware applications require interpretable models



Prediction-based Search



Comparison of Learning Approaches

(Deep) Reinforcement Learning: 

• immediately output the action that is best according to previous experiences

Prediction-based Search:

• search for the best action-sequence according to the simulated environment

➢ Solution can be interpreted since the whole search tree is available

➢ Evaluating the model’s prediction confidence and model the agent’s risk

➢ Performance scales with the forward model’s accuracy and the available search time



Motion Control Test Environments

Five Motion Control Environments of the OpenAI Gym Framework gym.openai.com

• Testing discrete in- and outputs as well as rewards

• All tested environments are fairly low in complexity

• By studying them we want to achieve a clear picture on prediction-based 

search methods and how they perform

http://gym.openai.com/


Experimental Setup

For each environment we train the agent by:

• Continuously observe the environment after each action

• Update the model at the end of each episode

• The process is repeated 10 times, recording the mean reward per episode

Results are compared to Reinforcement Learning Model

• Discrete action space: SARSA [1], DQN [2], CEM [3]

• Continuous action space: NAF [4]



Training Results I/II

Both, Cart Pole and Acrobot, can be effectively 

learned and show stable results

First successful run in Cart Pole has been observed 

in the fifth episode.

In Acrobot the prediction accuracy slowly increases  

for longer search depths.



Training Results II/II

Lunar Lander: the agent quickly learn to land in 

case the target is directly below it

• But fails to land at distant positions due to 

missing positive examples

Pendulum: the agent quickly learns to swing up 

the pole and keeps it balanced

• With limited search depth, the agent does 

not swing to the opposite direction for speed



Video for Training and Evaluation Runs



Prediction Accuracy Over Time

Comparing the true and the predicted state 

allows us to measure the models accuracy:

• Initial states are predicted well since many of 

them have been sampled during training 

• Errors propagate over consecutive predictions

• Rare events or insufficiently sampled states 

can yield drastic prediction errors

Adapted from: Freeman, C. D., Metz, L., & Ha, D. (2019). Learning to Predict Without Looking Ahead: World Models 
Without Forward Prediction. 9, 1–12. http://arxiv.org/abs/1910.13038



Planning Horizon Dilemma I/II

Fixing a planning horizon is a non-trivial task:

• Long planning horizons yield a more accurate estimation of the expected return

• but it also increases the number of states to be analyzed

In addition to this trade-off the model's accuracy limits the effective search depth

• As shown before: errors will accumulate over time reducing our confidence with 

every layer of the search tree

• In comparison: the true forward model provides an accurate prediction for each 

level of the search tree



Planning Horizon Dilemma II/II

Probabilistic classifiers may allow us to measure the model's confidence in made 

predictions

• in case we can measure the confidence of our prediction, we may bound the 

search to a confidence threshold

• therefore, dynamically limiting the search depth

Even better: learn models that are reliable in the long-term prediction task



Exploration vs. Exploitation during Training

The classic exploration vs. exploitation tradeoff affects the training procedure

• exploration: gathering samples of the whole state-space to assure an accurate 

prediction for all value ranges

• exploitation: focus on analyzing promising areas of the state-space to 

efficiently learn how to act in the unknown environment

The latter can be seen in the training process of Lunar Lander

• the agent quickly learns to land in case the drone is directly above the platform

• but fails in case the platform is in another position



Conclusion

Forward Model Learning can be feasible for motion control applications but lacks

• model centric training approaches 

• long-term reliable forward models

Similarly, search-based methods can yield great performance but are missing

• methods for efficiently selecting actions in continuous action spaces

State- and action-abstraction methods may resolve these problems.



Future Work

➢ How does the presented approach compare with model-based 
reinforcement learning?

➢ Extend the efficiency of search-based algorithms in case of 
continuous state and action-spaces.

➢ Estimate the reliability of a model’s prediction given the current 
observation.

➢ Implement application-centric state and action abstractions to 
speed-up the model building process.
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